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Abstract

Mass transfer enhancement by a pulsatile laminar ~ow in an axisymmetric wavy channel has been investigated
numerically for the range of 49 ¾ Re ¾ 149 and 9[0 ¾ St ¾ 09[ The optimal Strouhal number has been determined as a
function of the Reynolds number and the wavelength of the channel[ It is found that the optimal Strouhal number
increases weakly as the Reynolds number decreases[ It is also found that the optimal Strouhal number is almost inversely
proportional to the channel wavelength[ For better understanding of the enhancement mechanism\ the Lagrangian ~ow
analysis has also been performed[ For an e.cient computation\ the Eulerian velocity _eld is represented by the Fourier
series[ Particle trajectories show chaotic behaviors when the Strouhal number is close to the optimal value[ It is observed
that there is a very strong correlation between the mass transfer enhancement factor and the average Lagrangian
Lyapunov exponent[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

C½ concentration ðkg mole m−2Ł
D mass di}usivity ðm1 s−0Ł
E mass transfer enhancement factor\ dimensionless
R½ maximum radius of axisymmetric wavy channel ðmŁ
Re Reynolds number
Sc Schmidt number
Sh Sherwood number de_ned by equation "6#
ðShŁt spatio!temporal mean Sherwood number de_ned
by equation "7#
St Strouhal number
ur radial velocity\ dimensionless
ux axial velocity\ dimensionless
uo

i\ j original velocity at grid point "i\ j#\ dimensionless
ur

i\ j reconstructed velocity at grid point "i\ j#\ dimen!
sionless
uj j!directional velocity in the orthogonal curvilinear
coordinate system
uh h!directional velocity in the orthogonal curvilinear
coordinate system[

� Corresponding author[

Greek symbols
a1 pulsatile Reynolds number in equation "5#
g geometric amplitude
o dimensionless ~ow amplitude in equation "5#
lL _nite!time Lagrangian Lyapunov exponent
l¹L average Lagrangian Lyapunov exponent
V½ h radian frequency of pulsation ðs−0Ł
Vw dimensionless geometric wave number divided by p

V½ w dimensional geometric wave number divided by p

ðm−0Ł[

0[ Introduction

Heat and mass transfer enhancement by pulsatile ~ows
is of great importance and has been studied numerically
and experimentally by many investigators[ From pre!
vious studies\ it is known that the pulsation of ~uid ~ow
alone in a straight channel has little e}ect on heat and
mass transfer[ Thus the heat and mass transfer enhance!
ment in a channel with periodically modi_ed geometry
has attracted attention[

As a way of geometry modi_cation\ a channel with
periodic square groove has been considered[ Patera and
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Mikic ð0Ł performed experiments to observe the resonant
heat transfer enhancement by excitation of shear!layer
instabilities[ Ghaddar et al[ ð1\ 2Ł studied the same prob!
lem by numerical investigation and found strong res!
onant nature of response to small ~uid oscillations near
the natural frequency[ However\ their non!smooth
geometry results in higher pressure drop[ On the other
hand\ Nishimura et al[ ð3Ł performed experiments for the
~ow and mass transfer characteristics in sinusoidal wavy
1!D channel for a purely oscillating ~ow[ Although they
observed mass transfer enhancement\ they could not _nd
any signi_cant e}ect of the oscillating frequency because
the range of the Strouhal number in their experiments
was too low[ Later\ Nishimura and Kojima ð4Ł recon!
sidered the pulsatile ~ow in a wavy channel to see the
e}ects of net ~ow\ amplitude and frequency of oscillation[

Fluid mixing has been considered as one of the key
factors in heat and mass transfer enhancement[ Thus\
there have been quite extensive works for understanding
of mixing mechanism itself in wavy channels ð5Ð03Ł[
Sobey and his co!workers ð5Ð7Ł studied the oscillating
~ow in a furrowed channel with special attention to the
steady streaming e}ect and vortex ejection[ Recently
chaos theory has been applied to improve the under!
standing and exploitation of ~uid mixing ð04Ł[ In that
direction\ Guzman and Amon ð02Ł used modern dynami!
cal system techniques for the analysis of ~ow in the wavy
channel[ They used the concepts such as autocorrelation
function\ pseudo space representations\ Poincare�
sections\ etc[ Amon et al[ ð03Ł analyzed the characteristics
of convergingÐdiverging channel ~ows with view points
of the Lagrangian and Eulerian chaos and their relation!
ship to the mixing enhancement[

In the present work\ we study numerically the problem
of chaotic mixing and mass transfer enhancement by
pulsatile laminar ~ow in an axisymmetric wavy channel[
As we have seen above\ there have been considerable
works on the mass transfer enhancement by the pulsatile
~ow in wavy channel[ However\ there remain several
points to be studied further[ Nishimura and Kojima ð4Ł
observed experimentally that the mass transfer is
enhanced as the oscillation frequency is increased\ but
they could not _nd the optimal frequency due to the
parameter range adopted in their study[ This point pro!
vides the _rst movitation of our work[ In the _rst part of
our work\ we _nd the optimal oscillation frequency\
which is represented by the optimal Strouhal number\ as
a function of the Reynolds number and the wavelength
of the wavy channel[ The next objective is to _nd a
relationship between the mass transfer enhancement and
the Lagrangian ~ow characteristics[ For an e.cient com!
putation\ the Eulerian velocity _eld is represented by the
Fourier series and the average _nite!time Lagrangian
Lyapunov exponent is computed by using the method of
Amon et al[ ð03Ł[ As will be shown later\ it is observed that
there is a strong correlation between the mass transfer

enhancement factor and the average Lagrangian Lya!
punov exponent[

1[ Problem statement

We are interested in the pulsatile laminar ~ow and mass
transfer in an axisymmetric wavy channel[ The governing
equations are the continuity\ the momentum\ and the
mass transfer equations[ We assume laminar ~ow of
incompressible Newtonian ~uid with constant properties
such as density\ viscosity\ and di}usivity[ The schematic
of the axisymmetric wavy channel is shown in Fig[ 0\
where g is the dimensionless geometric amplitude de_ne
by g � H½ :R½ and V½ w is the dimensional geometric wave
number divided by p[ They are de_ned in the equation

r½ � R½ ð"0−g#¦g cos"V½ wpx½ #Ł "0#

where R½ is the maximum radius of the channel[
In order to nondimensionalize the governing equa!

tions\ the following characteristic scales are introduced]

uc � u¹ max\ lc � R½ \ tc �
0

V½ h

\ pc � ru1
c \

Cc � C½ i−C½ w

where u¹max is the time!averaged velocity at the center of
the entrance plane of the channel\ V½ h is the radian fre!
quency of the imposed pulsatile ~ow\ C½ i is the inlet con!
centration\ and C½ w is the wall concentration[ All variables
are normalized directly by the characteristic values except
for the dimensionless concentration which is de_ned as
c �"C½ −C½ w#:"C½ i−C½ w#[ For the governing equations\ we
have the continuity equation

9 = u� 9 "1#

the momentum equation

St
1u

1t
¦u =9u � −9p¦

0
Re

91u "2#

and the mass transfer equation

St
1c
1t

¦u =9c �
0

Re Sc
91c[ "3#

In "2#\ we have two important ~ow parameters which are

Fig[ 0[ An axisymmetric wavy channel where V½ w is the geometric
wave number divided by p and H½ :R½ is the dimensionless ampli!
tude denoted by g in equation "0#[
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the Reynolds number\ Re\ and the Strouhal number\ St[
The Reynolds and the Strouhal numbers are de_ned as

Re �
uclc
n

\ St �
V½ hlc
uc

"4#

and the Schmidt number in "3# is de_ned as Sc � n:D[
For the analyses of ~ow _eld and heat and mass trans!

fer in a wavy channel\ most of the previous workers ð1\
2\ 5\ 8Ł considered the section of one period and applied
the fully developed condition[ In the present work\
di}erently from previous workers\ we consider the section
of wavy channel with several periods as our problem
domain[ As the boundary conditions for the ~ow _elds\
we use the following conditions[ On the solid surface
"hereinafter denoted by 1V0#\ no slip condition holds[ At
the inlet "1V1#\ the pulsatile velocity pro_le is imposed[
The unsteady pulsatile velocity pro_le imposed at the
channel inlet will be discussed in more detail shortly[ The
symmetry condition holds for the center line "1V2#[ For
the outlet condition "1V3#\ we assume that ~ow _eld is
periodically fully!developed in the sense that the velocity
pro_le at the outlet is identical to that at one wavelength
preceding section[ For the boundary conditions of the
mass transfer equation\ we have the constant wall con!
centration c � 9 on 1V0 and the inlet condition c � 0 on
1V1[ At the symmetry axis "1V2#\ as in the ~ow _eld
computation\ the symmetry condition is used[ At the exit
"1V3#\ we impose the fully!developed condition
"1C:1x � 9#[

As the dimensionless velocity pro_le at inlet\ we use

ux � $"0−r1#¦o 6"0−r1# sin t

−
a1

3 0
2
3

−r1¦
r3

3 1 cos t7%^ ur � 9 "5#

which includes two parameters a1 and o[ The _xed value
a1 � 26[64 is used for all our computations and two
values of o � 9[1 and 9[0 have been used[ When
a1 � 26[64 and o � 9[1\ the velocity pro_le has quite inter!
esting features as shown in Fig[ 1[ It shows the backward
~ow characteristics and it is asymmetric with respect to
t � p[ If the oscillation amplitude is reduced to o � 9[0\
there is no backward ~ow[

A comment may be given to the velocity pro_le in "5#[
Originally it is the asymptotic solution for the pulsatile
~ow in a straight channel driven by the time!periodic
pressure gradient −"1p½:1x½ # � G½ 9ð0¦o sin"V½ ht½#Ł for the
case of a1 � l1

c V½ h:n ð 0 "see Leal ð05Ł#[ In that case\ a1 is
called the pulsatile Reynolds number and o the ~ow
amplitude[ Of course\ for large values of a1\ "5# does not
have meaning as the asymptotic solution[ However\ as
we have seen in Fig[ 1\ it does show quite interesting ~ow
characteristics which is similar to those of pulsatile blood
~ow[ Thus it has been adopted as the imposed inlet vel!
ocity pro_le by considering a1 and o as just parameters in
the analysis of blood ~ow in an artery ð09Ł[

In order to measure the transport characteristics in the
pulsatile ~ow\ we de_ne the Sherwood number as

Sh �
0
A gA $−

1c
1n% dA �

0
A gA $−

0
hh

1c
1h% dA "6#

where A is the dimensionless mass transfer surface area
and h is the coordinate of the orthogonal "j\ h# coordinate
system for numerical analysis "see next section#[ The spa!
tio!temporal mean Sherwood number is now de_ned as

ðShŁt �
0
T g

T

9

Sh dt "7#

where T is the dimensionless period of the imposed pul!
satile ~ow "in this work\ T � 1p#[ The mass transfer
enhancement factor E is de_ned as

E �
Shunsteady

Shsteady

�
Sh"St\Re\Sc\o#
Sh"Re\Sc\o � 9#

"8#

where Shunsteady is equal to ðShŁt[ Note that the reference
state is the steady state in which there is no oscillation at
all[ Thus\ Shunsteady does not necessarily approach Shsteady

even in the limit St:9[ The reason is that the ~ow _eld
is still oscillating with very low frequency in the case of
pulsatile ~ow\ while the ~ow _eld at steady state is _xed
with respect to time[

2[ Numerical methods

For the solution of Eulerian ~ow _eld equations and
the mass transfer equation\ we have used the _nite di}er!
ence method with the boundary!_tted orthogonal grid
generation method[ For generation of the orthogonal
grid systems\ we have used the method developed by Oh
and Kang ð06Ł[ The grid systems generated for several
geometric wave numbers are shown in Fig[ 2\ where the
grid line in the ~ow direction is the j!coordinate and the
grid line orthogonal to it is the h!coordinate of the "j\ h#!
coordinate system[ The geometric amplitude g in equa!
tion "0# was chosen to be 9[1[ For most of our com!
putation 70×10 grid systems have been used[ The e}ects
of grid resolution on the accuracy of solution were tested
by using 010×20 and 050×30 systems and it was found
that 70×10 system has su.cient resolution for the pur!
pose of present study[

Since the problem is axisymmetric\ the stream function
and vorticity formulation is used for the ~ow _eld analy!
sis[ As the time marching scheme\ the ADI scheme is used
for the solution of the vorticity equation with the full
convergence of the solution of the stream function equa!
tion at each time step[ The detailed numerical scheme for
the unsteady ~ow _eld is available elsewhere ð09Ł[ The
unsteady mass transfer equation is also solved by using
the ADI scheme[ In order to make sure that the period!
icity of the solution of the mass transfer equation is fully
achieved\ the following convergence criterion is used[
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Fig[ 1[ Inlet velocity pro_le during one period "T � 1p# predicted by equation "5# with a1 � 26[64 and o � 9[1[

Fig[ 2[ Orthogonal grid systems for axisymmetric wavy channels with di}erent geometric wave numbers Vw[
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ðShŁt = "n¦1#p−ðShŁt =np ³ 09−2 "09#

where ðShŁt=np is the spatio!temporal mean Sherwood
number for the time interval ð"n−0#p\ npŁ and
ðShŁt= "n¦1#p is for ðnp\ "n¦1#pŁ[

As mentioned in the Introduction\ one of the objectives
of the present work is to perform Lagrangian ~ow analy!
sis for better understanding of the mass transfer enhance!
ment[ In general the Lagrangian ~ow analysis is based
on the particle trajectories obtained by integrating

dx

dt
� u"x\ t# "00#

where u"x\ t# is the velocity _eld obtained by the Eulerian
~ow _eld computation[ In order to supply the Eulerian
~ow _eld data in "00# e.ciently\ we use the Fourier series
representation of the ~ow _eld[ Based on the fact that
the ~ow _eld is 1p!periodic\ the velocity component at
each grid point "i\ j# can be represented as

ui\ j"t# �
A9

1
¦ s

�

k�0

"Ak cos kt¦Bk sin kt# "01#

where u is uj or uh[ The coe.cients in "01# are obtained
by numerical integration of the orthogonality relations\
in which the time periodic numerical solution is used[
The advantage of the present approach is that we can
perform the integration of the orthogonal relations along
with the time marching of the numerical solution of the
~ow _eld[ Thus\ we need to memorize only the numerical
solutions at the current time step and the previous time
step for integration[

The behaviors of the Fourier coe.cients for uh at a
typical grid point "19\ 04# are shown in Fig[ 3 for the case
of Vw � 0\ Re � 149\ and St � 0[ The convergence is
excellent and they become O"09−3# after the 19th mode\
and O"09−4# after the 29th mode[ After obtaining the
coe.cients\ we reconstruct the velocity _eld whenever

Fig[ 3[ Fourier coe.cients for uh at the grid point "19\ 04# when
Re � 149 and St � 0[

Fig[ 4[ The error norm as a function of mode numbers[ The
closed circles are for the maximum error norm >uo

i\ j−ur
i\ j> max

and the open circles for the average error norm >uo
i\ j−ur

i\ j> avg[

we want[ The reconstruction is done by using the _nite
number of terms as

ur
i\ j"t# �

A9

1
¦ s

N

k�0

"Ak cos kt¦Bk sin kt#[ "02#

In order to see the accuracy of the reconstructed velocity
_eld\ we use the error norm de_ned by

>uo
i\ j−ur

i\ j> �X
0
1p g

1p

9

"uo
i\ j−ur

i\ j#1 dt "03#

where uo
i\ j is an original velocity signal at grid point "i\ j#[

The accuracy of the reconstructed velocity _eld is checked
by the maximum value and the average value of the norm
over all grid points[ The result is shown in Fig[ 4\ which
shows that the series with N � 29 gives a reconstruction
with su.cient accuracy[ Thus\ in the present study we
have used N � 29 for computation of Lagrangian particle
trajectories[

The particle trajectories have been obtained as follow!
ing[ For the four neighboring grid points of the particle
position at t � t\ the velocity components uj\ uh are
obtained by "02#[ Then "uj\ uh# of the "j\ h# coordinate
system are transformed to "ux\ ur# of the "x\ r# coordinate
system[ The new position of the particle is obtained by
integrating "00# with the explicit Euler method[ If the
particle position is not exactly at a grid point\ the velocity
components are obtained by the bilinear interpolation of
the values at the four neighboring points[ The time step
used in integration is Dt � 09−3[

3[ Results and discussion

3[0[ Unsteady ~ow _elds and mass transfer

We have studied the dynamical ~ow patterns and the
unsteady mass transfer for pulsatile ~ows in an axi!
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symmetric wavy channel in the range of 49 ¾ Re ¾ 149
and 9[0¾ St ¾ 09[ We chose the range of the Reynolds
number for which the ~uid ~ow is expected to be laminar[
For the range of the Strouhal number\ some previous
workers ð3\ 5\ 8Ł considered the cases of low Strouhal
number in the range O"09−3#ÐO"09−0#\ and some others
considered moderately high Strouhal numbers in the
range O"09−1#ÐO"0# ð4\ 09Ł[ Especially Nishimura and
Kojima ð4Ł performed their experiments up to the Strou!
hal number St � 0[4[ "In their de_nition\ the largest value
was six[ Although their geometry is 1!D and ours is
axisymmetric\ if the two de_nitions are compared based
on the mean inlet velocity we can see that there is a
factor of 3 between their de_nition and our de_nition[# As
mentioned in the Introduction\ however\ their Strouhal
number range was not high enough to _nd the optimal
Strouhal number for the mass transfer enhancement[
Thus\ in the present study\ we chose the range mentioned
above in the hope that we _nd an optimal Strouhal
number[

Streamlines at the speci_ed times of one period are
shown in Fig[ 5 for the case of Re � 149\ St � 1\ Vw � 0
with the inlet velocity pro_le given in Fig[ 1 "o � 9[1#[
The ~ow _eld has a 1p!periodicity due to the 1p!periodic
inlet ~ow condition[ Thus the ~ow _eld is quite regular
in the Eulerian point of view[ However\ in the Lagrangian
point of view\ the particle trajectories show very com!
plicated behaviors as will be shown later[

At t � 9 "here t is measured after the fully time!periodic
~ow _eld is obtained#\ there is a rotating ~ow in the
counterclockwise because of the decelerating ~ow during
p ¾ t ¾ 1p of the previous period[ As the time increases
from t � 9 to p\ the ~ow _eld is accelerated and the x!
directional pressure gradient "1p:1x# becomes negative
more and more\ and the counterclockwise vortex is
diminished and swept downstream as shown for t � p:3
and p:1[ However\ as the ~ow rate increases further\
the pressure at the diverging section increases and the
pressure is built!up near the point of maximum cross
section[ The reversing pressure gradient makes a new
recirculating ~ow as seen in Figs 5"d# and "e#[ When
p ³ t ³ 1p\ the reversing pressure gradient\ i[e[
"1p:1x# × 9 is built!up and the recirculating ~ow becomes
stronger as shown for the cases of t � 4p:3 and 2p:1[ As
the ~ow rate decreases further\ the vortex is ejected from
the wall and it is bulged out to occupy the entire channel[
This behavior is possible because the continuity of stress
of viscous ~uid ensures that the moving ~uid entrains
stationary ~uid before the whole ~uid would come to
rest[ The growth\ diminishing\ and ejection of the vortex
result in the complicated particle trajectories and the mass
transfer enhancement as will be shown later[

Figure 6 shows the instantaneous concentration pro!
_les during one period under the same conditions for the
~ow _eld in Fig[ 5 with the Schmidt number Sc � 0[ The
concentration pro_le is 1p!periodic due to the periodicity

Fig[ 5[ Instantaneous streamlines during one period when
Re � 149\ St � 1\ Vw � 0[9\ and o � 9[1[

of the ~ow _eld[ In this case\ the mass transfer Peclet
number is Pe � Re =Sc � 149 and the convection e}ect is
dominant[ Thus as shown in the _gure\ the concentration
pro_le is highly coiled when there are circulating vortices[
This behavior is expected to enhance the mass transfer
rate[ In the next subsection\ the mass transfer enhance!
ment is discussed in a quantitative sense[

3[1[ Mass transfer enhancement by unsteady mixin`

The mass transfer enhancement factor E was intro!
duced in Section 1 in order to represent how much the
transport is enhanced by the pulsatile ~ow in a wavy
channel[ In Fig[ 7\ the mass transfer enhancement factor
is shown as a function of the Strouhal number for several
values of the Reynolds number when Sc � 0\ Vw � 0
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Fig[ 6[ Instantaneous concentration pro_les when Re � 149\
St � 1\ Sc � 0\ Vw � 0[9\ and o � 9[1[

with the pulsation amplitude o � 9[1[ Since the Strouhal
number is proportional to the pulsation frequency\ we
may regard the results as the pulsation frequency e}ects
on the mass transfer enhancement[ From the _gure\ we
can observe two facts[ One is that the mass transfer
enhancement increases as the Reynolds number
increases[ This fact is self!explanatory because the
dynamical nature of the ~uid ~ow\ which results in the
mass transfer enhancement\ becomes stronger as the Rey!
nolds number increases[ The same trend has also been
observed by the previous workers " for example\ Nish!
imura et al[ ð3Ł\ Nishimura and Kojima ð4Ł#[

The second fact is that there exists an optimal Strouhal
number for each Reynolds number\ and that the optimal
Strouhal number deceases as the Reynolds number
increases[ The trend may be explained by the fact that

Fig[ 7[ The e}ect of the Strouhal number on the mass transfer
enhancement factor for di}erent Reynolds numbers when
Vw � 0[9\ Sc � 0\ and o � 9[1[

less energy is required to excite the velocity _eld as the
energy loss due to viscous dissipation decreases[ Even
though not directly applicable to the present study\ the
results of Ghaddar et al[ ð1Ł is worth mentioning[ In their
study on the ~ow in grooved channels\ they computed
the least!stable grooved!channel mode and found that the
oscillation frequency decreases as the Reynolds number
increases[ If the least!stable mode is excited most easily\
we may expect that the ~uid mixing is enhanced at or
near the frequency of the mode[

Te second fact mentioned above has not been reported
for the 1!D or axisymmetric wavy channel problem and
there are several things to be noted[ One is that the
optimal Strouhal number is O"0# for the Reynolds num!
ber range considered in this study[ As mentioned earlier\
Nishimura and Kojima ð4Ł observed from their exper!
iments that the enhancement factor increases as the
Strouhal number increases[ However\ the range of their
Strouhal number was not high enough to detect the opti!
mal value[ Since the experiments of Nishimura and
Kojima ð4Ł are for the 1!D geometry with Vw � 9[6\ the
direct comparison of their results "their Fig[ 09# with the
results from the present study is not possible[ However\
the enhancement factor at their Re � 181 and St � 5 "in
our de_nition Re � 181\St � 0[4# is about 0[6 when they
used the pulsation amplitude parameter P � 0 "at this
parameter\ the system is about to have a backward ~ow#[
This fact shows that the results obtained in the present
study is reasonable[ In Fig[ 7\ there is one more fact to
be mentioned[ When the Strouhal number is very small
"e[g[ 9[0#\ the enhancement factor becomes less than one[
This is possible because the reference problem is for the
mass transfer in steady ~ow\ in which there is no ~ow
oscillation ðsee the de_nition in equation "8#Ł[ On the
other hand\ in the case of pulsatile ~ow with a very small
Strouhal number\ the problem can be regarded as a quasi!
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steady state problem[ However\ during one period\ it
experiences many di}erent values of the inlet velocity[
Thus the average does not have to be the same as that
for the reference problem[

Since the results in Fig[ 7 were obtained for the pulsatile
~ow with small backward ~ow "the pulsation amplitude
in equation "5# is o � 9[1 and see also Fig[ 1#\ we have
the question of whether the same behavior is obtained
for the pulsatile ~ow with smaller amplitude that does
not produce backward ~ow[ To answer the question\ we
performed the same analysis for the case of o � 9[0[ In
this case\ there is no backward ~ow and the range of the
inlet velocity is 9[2 ¾ ux ¾ 0[6 ðsee equation "5#Ł[ From
the results\ we found that the optimal values of the Strou!
hal number are not changed even though the enhance!
ment factor for each Reynolds number is decreased "the
results are not shown#[

The e}ect of the geometric wave number on the opti!
mal Strouhal number has also been studied[ In Fig\ 8\
the enhancement factor is plotted as a function of the
Strouhal number for various geometric wave numbers[
For the range of 9[4¾ Vw ¾ 0[4\ the optimal Strouhal
number is almost proportion to the geometric wave
number[ Since the wall wavelength is inversely pro!
portional to the geometric wave number\ the optimal
Strouhal number is almost inversely proportional to the
wall wavelength[ This fact suggests that the mass transfer
is most enhanced by the vigorous mixing when the pul!
sation time scale is more or less proportional to the time
scale required for convection of excited ~uid elements to
the next wavy region of the channel[

Thus far\ we have seen that there exists an optimal
Strouhal number when other parameters are _xed[ Now
it is appropriate to explain the maximum transport
enhancement at a certain pulsation frequency through

Fig[ 8[ The e}ect of the Strouhal number on the mass transfer
enhancement factor for di}erent geometric wave numbers[ Re
and Sc are _xed as Re � 149 and Sc � 0 "Vw � 9[9 corresponds
to the cylindrical channel#[

the physical processes[ The previous works on the res!
onant heat transfer enhancement in a periodically
grooved channel ð0Ð2Ł indicate that the hydrodynamic
resonance takes place when the imposed frequency is
the same as the natural frequency for the self!sustained
oscillation due to TollmienÐSchlichting waves[ They also
showed that there exists a least!stable frequency that
could be excited most easily even at the Reynolds num!
bers below the critical value for the self!sustained oscil!
lation[ Although the geometry considered in this study is
not exactly the same as the grooved channel\ the present
problem shares several common aspects with the groove
problem and the transport enhancement can also be
explained by the concepts of hydrodynamic instabilities[
Under steady condition\ there exist separating ~ows in
an axisymmetric wavy channel as in a grooved channel[
Thus\ if this basic ~ow _eld is perturbed at sub!critical
Reynolds numbers\ the ~ow would exhibit damped oscil!
lation at the frequency of the least!stable mode[ Now\ in
the case of pulsatile ~ow with a certain mean ~ow rate\
the strongest response is expected when the pulsation
frequency is near the frequency of the least!stable mode
of the perturbed ~ow about the steady ~ow _eld[ Because
of this hydrodynamic resonance\ the ~ow _eld becomes
most complicated and results in vigorous ~uid mixing
across the streamlines that would be obtained if the ~ow
_eld is steady[ In this way\ maximum transport enhance!
ment is obtained at a certain pulsation frequency[

The dependency of the optimal Strouhal number on
the geometric wave number can also be explained by the
hydrodynamic resonance[ Ghaddar et al[ ð1Ł studied the
geometric dependence of the selection of the least!stable
for the grooved channel ~ows[ Among the parameter sets
they studied\ the most relevant ones to the present study
are for the cases of L:l � 1\ where L is the length of one!
periodic unit and l is the length of the groove part "see
their Table 0#[ For these cases\ they showed that the
perturbed ~ow has one wave in a periodic unit and that
the frequency of the least!stable mode is almost inversely
proportional to L[ Although the geometry in this problem
is not exactly the same as those\ we can expect a similar
result for the present problem[ Thus\ we may anticipate
that the least!stable mode is also inversely proportional
to the geometric wavelength of the channel "or nearly
proportional to the geometric wave number#[ Therefore
the Strouhal number of the maximum enhancement is
expected to be almost proportional to the geometric wave
number as shown in Fig[ 8[

3[2[ La`ran`ian characterization of ~ow _elds

In the above\ we have explained the maximum trans!
port enhancement at a certain pulsation frequency based
on the concepts of the hydrodynamic resonance[
However\ since the key to high mass transfer rate is the
convective transport and ~uid mixing induced by the
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pulsatile ~ow\ we want to characterize the ~ow _elds by
using the concepts of the non!linear dynamics and the
Lagrangian dynamics in order to understand the mass
transfer enhancement better[ First we take a look at the
trajectories of "massless noninteracting point# particles
to see the qualitative nature of ~uid mixing[ Then we
analyze the ~ow _eld by using the Lagrangian Lyapunov
exponent for characterization in the quantitative sense[

3[2[0[ Chaotic particle trajectories
Trajectories of 5 test particles are shown in Fig[ 09 for

di}erent Strouhal numbers when Re � 149\ Vw � 0 and
o � 9[1[ From the _gure\ we can see that the particle
motions are relatively simple in the case of very high or
very low Strouhal number[ On the other hand\ in the
cases of St � 1\ 2\ and 0\ the particle motions are quite
complicated[ The complicated motion is due to the vortex
formation\ growing and ejection as discussed in the pre!
vious subsection[ Especially\ it is worthwhile to note that
even the particles starting from the center region of the
channel are entrained to the region near the wall after a
certain time[ It would be of particular interest if we note
also that there is a strong correlation between the com!
plexity of particle trajectories near the wall and the mass
transfer enhancement "see the case of Re � 149 in
Fig[ 7#[

To investigate di}usive transport of the particles\ we
~oat a blob of 0999 particles on the ~ow\ and trace their

Fig[ 09[ Particle trajectories obtained for the cases of di}erent
Strouhal numbers when Re � 149\ Vw � 0[9\ and o � 9[1] "a#
St � 9[0\ "b# St � 0\ "c# St � 1\ "d# St � 2 and "e# St � 09[

Fig[ 00[ Displacement of a blob of 0999 particles in the case of
St � 1 and Re � 149] "0# the blob starts at t � 9\ "1# t � 1 and
the variance s1 � 0[29\ "2# t � 3 and s1 � 3[16\ "3# t � 5 and
s1 � 08[34\ "4# t � 7 and s1 � 59[61\ "5# t � 09 and s1 � 89[88[

displacements along the traveling time[ Figure 00 is for
the case of Re � 149\ St � 1\ and o � 9[1[ The degree of
dispersion is measured by the variance s1 de_ned by
s1 � Sið"xi−xm#1¦"ri−rm#1Ł where xm � Sixi:n\ rm � Si!

ri:n and n is the number of particles[ From the _gure\ we
can see that the dispersion process is a}ected by the
circulating ~ows generated in the wavy region[ When the
particles reach a valley of channel at time t � 7Ð09\ a
portion of particles is separated from the main body of
the blob[ It is due to the saddle mode occurring in a valley
of the channel[

3[2[1[ La`ran`ian Lyapunov exponent
We have computed the Lagrangian Lyapunov

exponent along the grid lines near the wall to quantify the
mixing e.ciency following Amon et al[ ð03Ł[ According to
their idea\ the Lagrangian Lyapunov exponent lL esti!
mates the rate at which the distance between two initially
in_nitesimally close test particles increases or decreases
with time[ It is de_ned as

lL �
0
N

s
N

k�0

lk\ lk �
0

tk−tk9
ln 0

dk

dk
9
1 "04#

where dk
9 � >x0"tk9#−x1"tk9#> and dk � >x0"tk#−x1"tk#>
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are the initial and _nal distances between two test
particles\ respectively\ and N is the number of times that
this operation is repeated for a continuous time evolution
of the Eulerian velocity _eld[ In this study\ we have used
dk

9 � 4×09−4\ tk−tk9 � 9[14\ and N � 49 "so the time
required for repeating 49 times covers approximately two
periods of pulsation#[

The spatial distribution of the Lyapunov exponent lL

for the case of Re � 149\ St � 1\ Vw � 0\ and o � 9[1 is
shown in Fig[ 01[ A set of particle pairs were initially
positioned along the grid line j � 07 "the grid line j � 10
corresponds to the wall#[ In the _gure the points x � 2
and x � 4 correspond to the smallest diameter section
and x � 3 the largest diameter section "see Fig[ 2#[ We
can see that the stretching of ~uid element is strong in the
larger diameter region because of the vortex formation\
growth\ and ejection\ etc[ Since the stretched ~uid element
is folded by being bent as can be seen in Fig[ 00\ the high
value of lL indicates active mixing[

Since lL represents the local behavior of ~uid element\
we de_ne the average _nite!time Lagrangian exponent l¹L

in order to _nd some relationship between l¹L and the
mass transfer enhancement factor E[ To obtain l¹L\ we
_rst locate a set of particle pairs along grid line near the
wavy wall\ for example the grid points "20\ 08#\ "21\
08#\ [ [ [ \ "38\ 08#[ Then we compute lL for all those par!
ticle pairs and average them as l¹L �"Sn

k�0 lL#:n[
If mixing e.ciency is determined by the stretching rate\

it should be directly related to l¹L[ In Fig[ 02\ the average
Lagrangian Lyapunov exponent is shown as a function
of the Strouhal number for the case of Re � 149\ Vw � 0\
and o � 9[1 "the same ~ow conditions as those for the
closed circles in Fig[ 7#[ As we can see in the _gure\
l¹L has maximum at St � 2 and becomes smaller as the
Strouhal number increases to O"090# or decreases to
O"09−0#[ Now by comparing Fig[ 02 and Fig[ 7\ we can

Fig[ 01[ Spatial distribution of the _nite!time Lagrangian Lya!
punov exponents lL along the grid line j � 07 in the case of
Re � 149\ St � 1\ Vw � 0[9\ and o � 9[1[

Fig[ 02[ The e}ect of the Strouhal number on the average Lag!
rangian Lyapunov exponent l¹L " j � 07 represents the 07th grid
line in the radial direction and j � 08 the 08th grid line# when
Re � 149\ Vw � 0[9\ and o � 9[1[

see that the behaviors of the mass transfer enhancement
factor E and the average Lagrangian Lyapunov exponent
l¹L are very similar even though the optimal Strouhal
numbers are not exactly the same[ This fact suggests that
there is a strong correlation between the mass transfer
enhancement factor and the average Lagrangian Lya!
punov exponent[

4[ Conclusions

We have investigated numerically the mass transfer
enhancement by a pulsatile ~ow in an axisymmetric wavy
channel for the range of 49¾ Re ¾ 149 and
9[0 ¾ St ¾ 09[ The optimal Strouhal number for mass
transfer enhancement has been determined as a function
of the Reynolds number and the wavelength of the chan!
nel[ For better understanding of the enhancement mech!
anism\ the Lagrangian ~ow analysis has also been per!
formed[ For an e.cient particle trajectory computation\
the Eulerian velocity _eld is represented by the Fourier
series[ From the results of the present study we have
reached the following conclusions]

"0# The optimal Strouhal number is O"0# and is a weak
decreasing function of the Reynolds number[

"1# Another important factor to the optimal Strouhal
number is found to be the wavelength of the channel[
The optimal value of the Strouhal number is almost
inversely proportional to the wavelength of the chan!
nel[

"2# Particle trajectories show chaotic behaviors when the
Strouhal number is close to the optimal value[ It is
also observed that there is a very strong correlation
between the mass transfer enhancement factor and
the average Lagrangian Lyapunov exponent[
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